Julia toy project to learn how to write modules
Find a file
2022-06-19 01:25:40 +02:00
.ipynb_checkpoints added some exception handling 2022-06-19 01:18:04 +02:00
DoCarmo initial commitment 2022-05-30 23:54:01 +02:00
docarmo.jl being annoying with shrot circuits and ternary operators 2022-06-19 01:25:40 +02:00
README.md getting accustomed to mathjax 2022-05-31 00:08:31 +02:00
untitled added some exception handling 2022-06-19 01:18:04 +02:00
Untitled.ipynb added some exception handling 2022-06-19 01:18:04 +02:00

Given a parametrised curve \alpha\colon [t_0,t_f] \to \mathbb{R}^n,

  • Norm: |\alpha|=\sqrt{\alpha_1^2+\dots+\alpha_n^2}
  • Exterior product: given v,w \in \mathbb{R}^n, v\wedge w \in \mathbb{R}^n is the only vector orthogonal to v and w with |v\wedge w|=|v||w|.
  • Curvature and torsion:
k=|\alpha''|;\quad \tau=-\frac{\det(\alpha',\alpha'',\alpha''')}{k^2}
  • Frenet frame (n=3): t=\alpha', n=t'/k, b=t\wedge n
  • Rotation index (n=2): 2\pi I=\int^{t_1}_{t_0}k
  • Evolute: \beta=\alpha+n/k
  • Arc-length: s(t)=\int^{t_f}_{t_0}|\alpha|
  • Local canonical form (n=3; arc-length):
\alpha(s)=\left(s-\frac{1}{6}k^2s^3,\frac{1}{2}ks^2+\frac{k's^3}{6},-\frac{1}{6}k\tau s^3\right)