Julia toy project to learn how to write modules
| .ipynb_checkpoints | ||
| DoCarmo | ||
| docarmo.jl | ||
| README.md | ||
| untitled | ||
| Untitled.ipynb | ||
Given a parametrised curve \alpha\colon [t_0,t_f] \to \mathbb{R}^n,
- Norm:
|\alpha|=\sqrt{\alpha_1^2+\dots+\alpha_n^2} - Exterior product: given
v,w \in \mathbb{R}^n,v\wedge w \in \mathbb{R}^nis the only vector orthogonal tovandwwith|v\wedge w|=|v||w|. - Curvature and torsion:
k=|\alpha''|;\quad \tau=-\frac{\det(\alpha',\alpha'',\alpha''')}{k^2}
- Frenet frame
(n=3):t=\alpha',n=t'/k,b=t\wedge n - Rotation index (
n=2):2\pi I=\int^{t_1}_{t_0}k - Evolute:
\beta=\alpha+n/k - Arc-length:
s(t)=\int^{t_f}_{t_0}|\alpha| - Local canonical form (
n=3; arc-length):
\alpha(s)=\left(s-\frac{1}{6}k^2s^3,\frac{1}{2}ks^2+\frac{k's^3}{6},-\frac{1}{6}k\tau s^3\right)