Julia toy project to learn how to write modules
.ipynb_checkpoints | ||
DoCarmo | ||
docarmo.jl | ||
README.md | ||
untitled | ||
Untitled.ipynb |
Given a parametrised curve \alpha\colon [t_0,t_f] \to \mathbb{R}^n
,
- Norm:
|\alpha|=\sqrt{\alpha_1^2+\dots+\alpha_n^2}
- Exterior product: given
v,w \in \mathbb{R}^n
,v\wedge w \in \mathbb{R}^n
is the only vector orthogonal tov
andw
with|v\wedge w|=|v||w|
. - Curvature and torsion:
k=|\alpha''|;\quad \tau=-\frac{\det(\alpha',\alpha'',\alpha''')}{k^2}
- Frenet frame
(n=3)
:t=\alpha'
,n=t'/k
,b=t\wedge n
- Rotation index (
n=2
):2\pi I=\int^{t_1}_{t_0}k
- Evolute:
\beta=\alpha+n/k
- Arc-length:
s(t)=\int^{t_f}_{t_0}|\alpha|
- Local canonical form (
n=3
; arc-length):
\alpha(s)=\left(s-\frac{1}{6}k^2s^3,\frac{1}{2}ks^2+\frac{k's^3}{6},-\frac{1}{6}k\tau s^3\right)